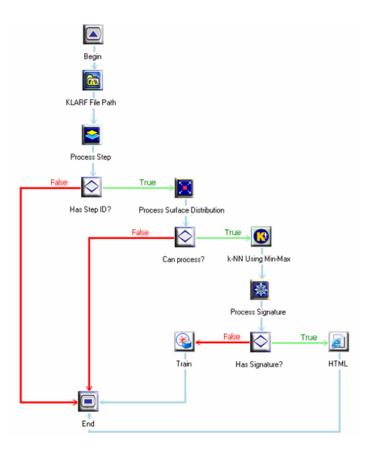
Application Note

AWB20060321

How to create a simple "AutoLearn" Recipe?

FEATURES


Process Surface Distribution
Process Step
Process Signature
Filter – k-NN Using Min-Max
Train
Document the recipe
Dynamic Signature Library

Introduction

The new function, called *AutoLearn*, automatically trains previously unknown spatial signatures into its dynamic defect signature library. If the signature repeats on any subsequent results file, the recipe with *AutoLearn* function, see Fig. 1, the recipe will automatically recognize it, classify it and notify the user by email or publish the signature to a *Web Portal*. This application note describes how to use the *Automation Workbench (AWB)* to create a recipe or program flow to monitor a KLARF's folder for previously unknown spatial signatures, with an average k-NN distance less than 500 microns.

Figure 1 Recipe with AutoLearn Library

Select All Begil Set Breakpoint Reset Breakpoint Cut Copy Delete Description Properties Has Step ID? Process Surface Dis

Begin

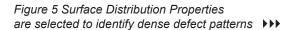

The recipe in Figure 1, starts with the "Begin" node, and it is considered a good practice to document the recipe, using the "Description" note. See Figure 2.

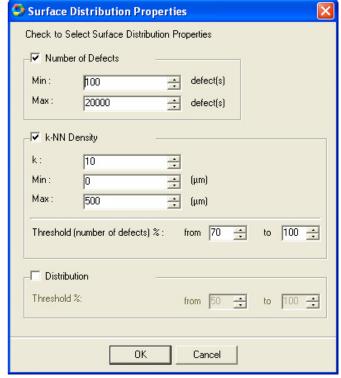
◀◀ Figure 2 Choose "Description" in "Begin" node

Point the cursor to the "Begin" node, right-click on the mouse button and choose "Description" to start to document the recipe. See Figure 3.

Figure 3 Document the recipe >>>

Process Step

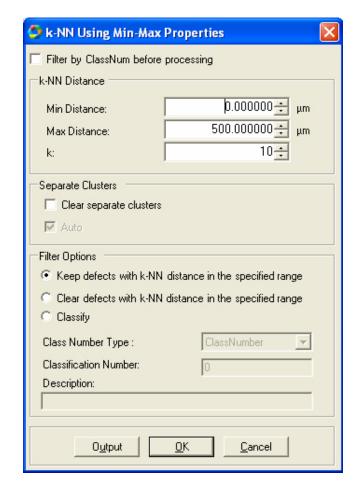

To obtain the best accuracy for signature recognition, SiGLaz recommends that input KLARFs are selected by Step ID in order to have a consistent level of background (random) defects. When creating a new recipe, it is usually a good practice to start by monitoring a single step in the fabrication process. Additional process steps with similar background levels and similar signatures can be added to the list of Step IDs once the recipe proves to be reliable for the initial process step. Use the "Process Step Properties" dialog to enter the *StepID* which you like to monitor. See Figure 4.


◀◀ Figure 4 Choose a StepID

Process Surface Distribution

Use *Process Surface Distribution* node to determine when the defect density distribution of the wafer meets the criteria for a defect signature. This function allows users to determine if the distribution of defects on the surface of the wafer is consistent with normal conditions. The user may input maximum and minimum values for defect count, k-NN distance and distribution percent. The function analyzes the distribution of defects on the wafer surface and determines if the distribution characteristics meet the specified parameters.

In this example, see Figure 5, we are looking to identify signature with defects that have proximity to their neighbors of approximately 500 microns and that have a defect pattern that constitutes more than 70% of the entire defects on the wafer.



K-NN using Min-Max

Use *k-NN using Min-Max* node to eliminate background defect that are not part of the defect pattern. See Figure 6. All defects that have k-NN distance above 500 microns will be filtered out. Note that it is also possible to classify defects in the desired density range and to use a "Filter by Classification Attributes" function to analyze only those defects.

Figure 6 Clear background defects from KLARF file >>>

Process Signature

Use *Process Signature* node with *Dynamic Library* option. Click on "*Settings*" to define the dynamic library. See Figure 7 and 8.

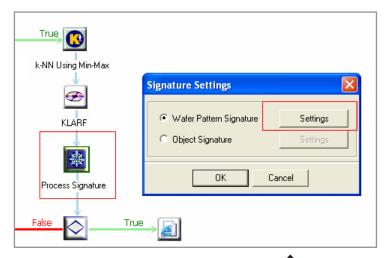


Figure 7 Click "Settings" to define dynamic library

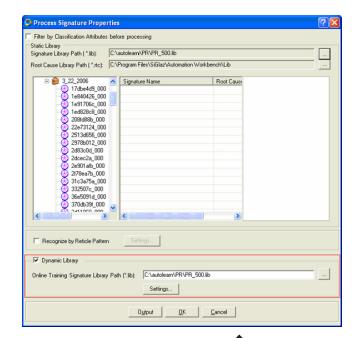
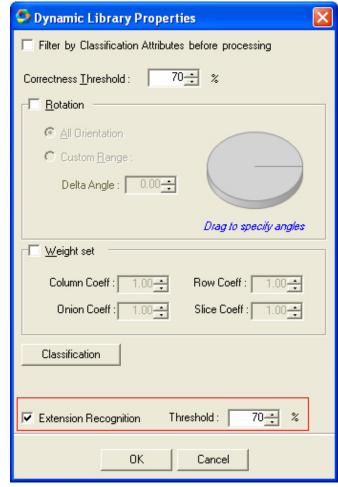



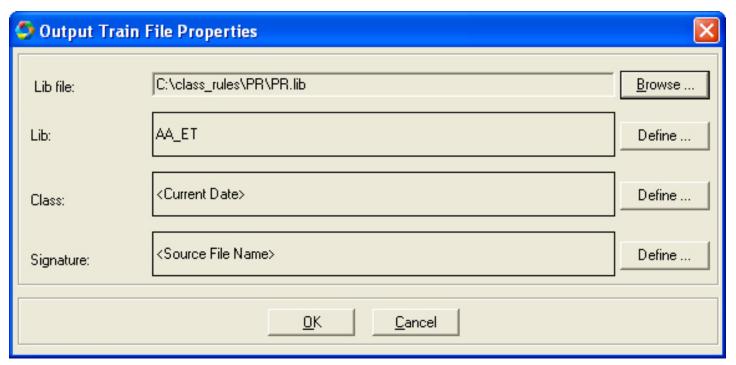
Figure 8 Define the "Dynamic Library"

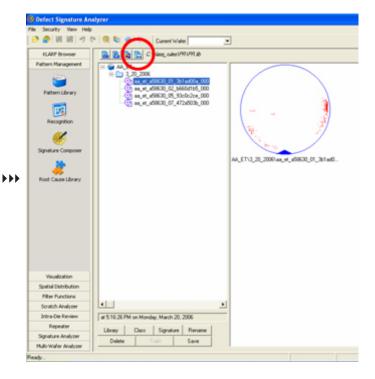
Click "Settings" to define pattern recognition properties using the dynamic library. See Figure 9. Use the Pattern Recognition Extension function to further define spatial attributes relating to the defect signature for detail pattern discrimination.

Figure 9 Use Pattern Recognition Extension >>>

Train

Use this option to define library name and file path and how the classes and signatures of the dynamic library will be named. See Figure 10




Figure 10 Dynamic Library

Dynamic Library

You can use the *Defect Signature Analyzer* to view and manage the dynamic library. Use the "Merge Library" function (see red circle in Figure 11) to add the Dynamic Library to the existing DSA Library. The result of the dynamic library is shown in Figure 11.

Figure 11 Dynamic Library

HTML Results

The followings are samples of defect signatures that were not initially in the signature library. After AutoLearn trained the initial signature into the dynamic library, subsequent occurrences of the signature were recognized by the recipe.

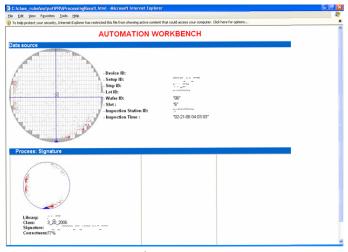


Figure 12 Edge Shading

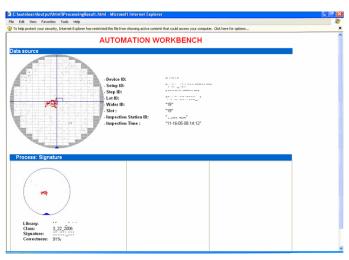


Figure 14 Center Large Blob

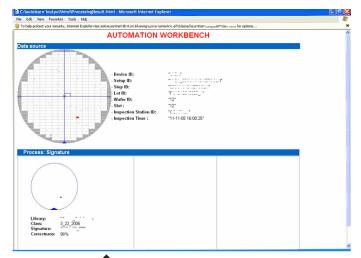


Figure 13 Blob

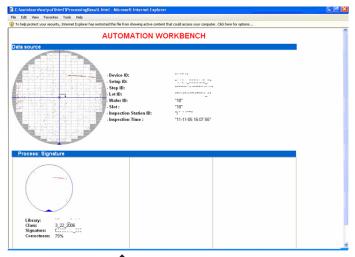


Figure 15 Scratch

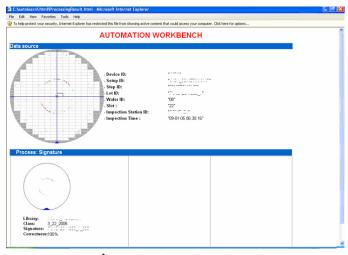


Figure 16 Circle

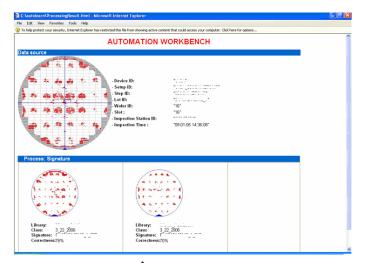


Figure 18 Focus Spot

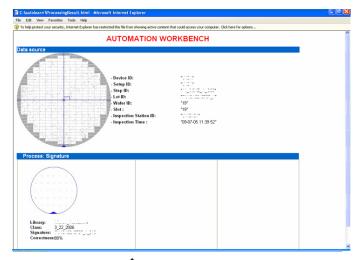


Figure 20 Repeaters

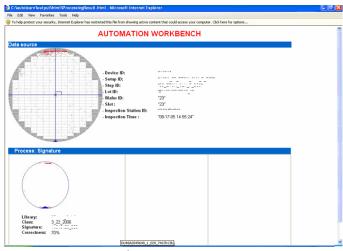


Figure 17 Edge Blob

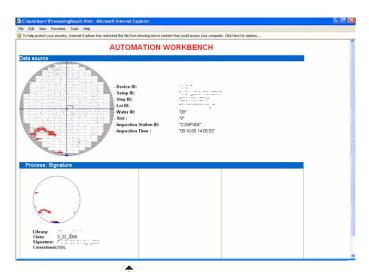


Figure 19 Streaks

Contact Us

Corporate Headquarter

SiGlaz

2953 Bunker Hill Lane, Suite 400, Santa Clara, CA 95054

Tel: 408-282-3599 - Fax: 408-282-3501

Email: sales@siglaz.com Website: http://www.siglaz.com

Research and Development

SiGlaz VN Ltd.

Unit 10.3b, 10th Floor, e.town Building 364 Cong Hoa, Ward 13, Tan Binh Dist.HCM City, Viet Nam

Tel: 84-8-812-2040 - Fax: 84-8-812-2039

Sales Representatives

Scientech Corporation

No. 182, Bade Road, Hsin-Chu City 300, Taiwan R.O.C.

Tel: +886 3 516-5177 - Fax: +886 3 516-5797

Scientech Shanghai Office

H, Floor 21, Zhongcheng Building 818 Dong Fang Road, Pu Dong New Area, Shanghai P.R. China 200122

Tel: +86 21 5820 0880 - Fax: +86 21 5820 0368

Selastar Corporation

3-20-12 Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Tel: 81-45-471-7169 - Fax: 81-45-474-0298

Disclaimer:

SiGlaz Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in SiGlaz' Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of SiGlaz are granted by the Company in connection with the sale of SiGlaz products, expressly or by implication. SiGlaz' products are not authorized for use as critical components in life support devices or systems.

© SiGlaz Corporation 2006. All rights reserved.

SiGlaz ® and combinations thereof, AWB® are the registered trademarks of SiGlaz Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

